基础科学aiCTX亦正面当仁不让介入及推杆动欧洲基本功学研讨

2019-05-16 / 历史秀 / 0 次阅读 / 0 次评论

乔宁博士补充道。

它的推出开启了基于像素级事件驱动运算的动态视觉处理的新纪元,打破了传统冯·诺依曼架构的局限, aiCTX计划于2019年6月完成A轮,采用GF22nm工艺设计,深耕神经形态运算研究的同时着眼于商业落地,相较于传统芯片, 基于纯异步数字电路设计,而传统的图像处理系统是逐帧对视频数据进行处理的,“DynapCNN支持视觉物联网传感器诸多场景的超低功耗边缘计算。

即使摄像机前的物体没有发生任何变化。

DynapCNN是由事件驱动的,而是由视觉场景中的变化触发,aiCTX创办于2017年3月,aiCTX为一系列人工智能应用提供超低能耗、超低延迟的芯片设计及解决方案:作为全栈式神经形态工程公司,几乎所有的视觉处理都是在云端完成的, ,随着物联网及移动终端对超低功耗本地实时智能处理的需求日益强烈。

芯片使用稀疏计算对场景中的物体移动进行处理。

处理器也会对每一帧的画面进行处理和计算,是拥有多项专利的成功的连续创业者,因此,DynapCNN处理器集成专用接口电路,瑞士高科技类脑芯片公司aiCTX发布了全球首款纯基于事件驱动运算的动态视觉AI处理器DynapCNN,擅长处理动态信息,例如手势识别、面部识别、移动物体的跟踪与定位等,DynapCNN的高灵活性和可重新配置性也为开发和实现一系列AI模型提供了无限可能性,”aiCTX首席执行官乔宁博士解释道,公司研发的超低功耗神经形态处理器可用于智能 机器人 、智能家居、可穿戴设备、安防、智慧城市、移动便携终端等多种人工智能应用场景,是一种高效经济的解决方案, 联合创始人、首席科学家Giacomo Indiveri教授是苏黎世大学终身教授, aiCTX系列芯片 aiCTX的系列芯片,“这是传统的DL 视觉加速器芯片无法实现的,与传统的方法不同,支持多种CNN架构,具有10年超低功耗数模混合电路、高性能异步电路、神经形态处理器设计经验,移动对象产生的任何像素变化都将被处理器实时处理,无需从设备向云端发送视频,并获得相应经费支持。

以模拟人脑神经元的工作方式及全并行的运算架构来提高计算能力。

将实时AI视觉处理现存方案的识别响应处理延迟缩短10倍以上,“DynapCNN的节能性意味着视觉AI运算可以始终打开,“目前, “应用本地AI处理器为物联网设备提供算力支持,成功设计及推出多款世界顶级神经形态处理器芯片,用于超低功耗。

DynapCNN的动态视觉解决方案在将运算能效提高倍的同时,”aiCTX高级研发工程师SadiqueSheik博士向记者解释,总部位于瑞士苏黎世,仿真等多方面人才,并且是对用户隐私的一种保护。

aiCTX获得十维资本领投的120万美元天使轮,相较于已有的DL实时视觉处理方案,在国际顶级刊物上发表文章逾200篇,可以避免将大量传感器数据上传到云端所消耗的功率和成本,基于纯异步电路的事件触发运算及高效的网络结构保证了aiCTX系列芯片具有超低能耗、超低延迟的特性,其芯片架构所具有的可拓展性适合于实现大规模脉冲卷积神经网络。

” 基于纯异步数字电路的事件驱动运算机制,用于加速研发及技术成果落地,并且可以在终端设备上实现mW级超低功耗本地实时数据处理”,单芯片集成超过100万脉冲神经元和400万可编程参数,全部来自于EPFL, aiCTX融资与科研经费 2017年底,关于DynapCNN的更多技术细节和展示即将发布,为车载及高速飞行器等高速视觉场景提供完美解决方案,由于打破了传统视觉处理帧的限制, aiCTX团队介绍 aiCTX拥有一支全球最领先的神经形态运算研发团队与经验丰富的管理团队,2018年初, DynapCNN是一款纯异步、高可配置性、可拓展性的神经形态处理器。

如果传感器前端的物体没有发生变化。

DynapCNN所提供的超低延时动态视觉解决方案将识别响应延时缩短了10倍以上,享有重要的国际影响力,同时KynanEng也曾领导苏黎世联邦理工、苏黎世大学的多个研究项目以及ABB、Alstom Power等多个工程类项目,aiCTX成功获批了欧盟H2020关于脑机接口的为期4年的科研项目“SYNCH”及欧盟动态机器视觉科研项目“TEMPO”,DynapCNN是全球首款将机器学习的高性能和事件驱动型神经拟态计算的高能效完美融合的专用AI芯片,DynapCNN打破了传统以帧为限的静态视觉处理技术限制,“对于实时视觉处理,进一步降低了芯片的动态功耗,DynapCNN是全球首款完全基于事件触发运算的AI处理器,是世界神经形态研究的领军人物与业界最权威人士之一,DynapCNN可以对像素动态数据流进行连续计算, 联合创始人、董事会主席Kynan Eng博士, DynapCNN的超低能耗智能视觉处理得益于其事件驱动的特性及aiCTX 多个独特IP在芯片级的整合。

目前aiCTX核心研发团队有15人, 得益于苏黎世大学和苏黎世联邦理工学院20多年来丰厚的研究成果和世界前沿的科研实力,被引用超过7000次,后担任苏黎世联邦理工神经形态处理器开发项目的领导人, aiCTX aiCTX是一家专注于神经形态运算及神经形态处理器设计与开发的瑞士高科技公司,DynapCNN处理器不使用高速时钟,芯片面积12mm2, 联合创始人、首席执行官乔宁博士是中科院半导体研究所博士。

同时基于动态视觉的事件触发运算机制使得芯片达到亚mW级的功率,我们的系统可以将实时视觉处理的功耗降低到几乎为零,适用于边缘计算、无需连接到云端的DynapCNN将拥有越来越广泛的应用场景,always-on的实时动态视觉信息处理,而aiCTX的芯片可以在本地进行所有处理,曾就职于英特尔、甲骨文、爱立信、瑞士信贷集团等世界知名企业。

aiCTX获得BV(百度风投)领投的150万美元Pre-A轮融资,进行脸部识别、手势识别、高速移动物体追踪、归类、行为识别等。

目前几乎所有的应用场景都基于对移动目标的识别,创业领域涉及神经工程、VR虚拟视觉、生物医药与云计算SaaS等,敬请期待,为超低延迟、超低功耗的全新的动态视觉处理而量身定制,aiCTX提供包括IP授权、硬件设计、软件配置等定制化服务以满足特定的应用需求,” DynapCNN相应的开发套件将于2019年第三季度上市, aiCTX也正积极参与及推动欧洲基础科学研究,这是为终端用户提供隐私和数据保护的强大举措,可直连绝大多数动态摄像头, 2018年底,负责欧洲多个类神经工程科研项目,此外,对移动物体实时识别可实现低于5ms的超低延迟。

包含硬件、软件、算法,ETHZ及UZH等世界顶级高校并拥有硕士或博士学位,作为全新一代动态视觉处理器, 日前。

(编辑:途游德州扑克)